Tag Archives: ddos

Nine Ways To Protect Your Technology Company From DDoS Attacks

DDoS attacks can wreak havoc on your company’s efficiency if you’re not careful. The Mirai botnet — malware that can be used for large-scale network attacks — can often go undetected due to common oversights and lack of preparation. It may be daunting to think about how IoT devices that make your company run smoothly can be used against you; however, it doesn’t take much time to set up multiple precautions to prevent it. Below, executives from Forbes Technology Council highlight simple and cost-effective ways that you can safeguard your company from baleful botnets. 1. Start By Looking At Your Infrastructure There are many botnets, Mirai just happens to be one of the largest known ones. Technology companies need to start developing more secure products rather than security being an afterthought. Firms need to look at their internet infrastructure to funnel botnet traffic away from their core business to enable the business to function when these attacks occur. – Heeren Pathak, Vestmark 2. Understand That Anyone Can Be A Target It’s very important to understand that anyone can be a target, no matter if you are a big or small company. If being offline just for a few minutes can cause a big economical impact, then you definitely should find a trusted partner that offers good solutions to mitigate against DDoS attacks. There are some companies offering this kind of service, but a quick Google search should be handy. – Cesar Cerrudo, IOActive 3. Choose The Right Hosting Partners No matter your line of business, your public-facing websites are potential targets of massive DDoS attacks. For business without a dedicated team of security experts, it’s important to choose the right hosting partners. For many customers of AWS, you automatically received free protection against some forms of attacks similar to Mirai botnet with the release of AWS Shield in December of 2016. – Jamey Taylor, Ticketbiscuit, LLC 4. Monitor Your Traffic Companies need to be skeptical of any device they have hanging on their networks. The average company now needs to apply firewall rules on a device-by-device basis, anticipating the possibility of a printer, web camera or AV control system becoming infected. Smart traffic monitoring software and methods of quarantining devices should be commonplace. – Chris Kirby, Voices.com 5. Set Strong, Custom Passwords IT security organizations should ensure their IoT devices have no direct public management access from outside the network. If an IoT device must be managed remotely through publicly accessible IPs, change the management password on the device from the default to a strong, custom one. IT admins need to put intrusion prevention, gateway anti-malware and network sandbox solutions at the network perimeter. – Bill Conner, SonicWall 6. Don’t Rely On The Internet Nearly all consumer products are computer-based in today’s marketplace, which makes reliance on the internet dangerous to a product’s infrastructure. That said, Cloudflare, Akamai and Dynect are solution services that will act as a protective wall for your servers and prevent large-scale network attacks. – Pin Chen, ONTRAPORT 7. Have The Right Company Policies In Place Technology companies should have policies in place to make sure IoT devices default factory credentials are changed as soon as they are procured. Will this guarantee they will never get infected with Mirai botnet? No. But this basic step along with modifying factory default privacy and security settings, firmware updates, audits, etc. will reduce the chances of an IoT device being infected. – Kartik Agarwal, TechnoSIP Inc 8. Cooperate And Act Mirai shows how an internet of everything can cause new kinds of net-quakes. Attackers can fire so much hostile traffic at one target that it takes down entirely unrelated sites nearby, in effect, causing major collateral damage. Unfortunately, there’s no simple defensive fix — it takes cooperation and active network control to deflect traffic tsunamis. – Mike Lloyd, RedSeal 9. Be Prepared Large-scale network attacks are not going away, and technology companies need to ensure they’re prepared. Doing a security audit of what protections are currently in place, and looking for existing holes that need to be plugged, is a good place to start. Also, make sure any IoT devices used at your company have security in place to prevent them from becoming part of this bot army. – Neill Feather, SiteLock Source: https://www.forbes.com/sites/forbestechcouncil/2017/03/16/nine-ways-to-protect-your-technology-company-from-ddos-attacks/2/#73d67f6a7178

Visit link:
Nine Ways To Protect Your Technology Company From DDoS Attacks

Standards and Security: The Great DDoS Challenge

Whether or not you work in IT security, distributed denial of service (DDoS) attacks are becoming more visible by the day. In the last three months of 2016 alone, DDoS attacks greater than 100Gbps increased by 140% year-on-year, according to a recent report. This growth isn’t expected to decelerate any time soon. The damage inflicted by DDoS attacks in the past year has been seen across various aspects of the online world. We often hear of news sites and political campaigns being taken offline, but this is now moving towards more mission critical operations in hospitals, banks and universities. The most significant example in recent months is the DDoS attack against Domain Name Service (DNS) provider Dyn. Let’s take a look at this case and determine the potential impact that conformance to existing standards could have had on the incident. IoT and the DDoS dilemma The Dyn attack in October 2016 impacted a whole host of major websites including Amazon, Netflix, Twitter, Spotify and Github, and was widely reported as the largest of its kind ever recorded. Its substantial impact was down to the huge number of connected devices used in the attack – not just laptops and PCs but routers, printers and baby monitors that make up the so-called Internet of Things (IoT). These devices were deliberately infected with the Mirai malware in order to create a botnet to carry out the momentous attack. It’s important to be clear on the mechanisms of the Mirai malware if we’re to consider the potential impact of standards on the attack. By using known passwords, it is able to search for susceptible IoT devices before infecting them with the malware. As a result, the device becomes part of a botnet which is capable of launching DDoS attacks from all of its infected devices. Seven out of 12 DDoS attacks in Q4 2016 were down to the Mirai botnet. In the Dyn case, it was estimated that the attack involved 100,000 malicious endpoints. The botnet sent around 1 TB of traffic per second to the company’s servers, meaning legitimate requests were denied. Mitigating DDoS attacks This attack was fundamentally a consequence of the devices involved still retaining their default password. There are two arguments as to where culpability lies in this instance. Some blame the users for not changing the default passwords once they were connected. Others feel more responsibility should fall on the manufacturers to ensure operators understand the importance of changing default passwords. In fact, in some cases manufacturers were distributing products with well-known default passwords and no option to change the password without purchasing a new product. In any case, these devices were vulnerable and open to attack. Standards: the silver bullet? DDoS attacks are becoming far more sophisticated so it’s essential that hardware and software manufacturers start to seriously consider standards to address the potential security risks in the growing Internet of Things. One key standard is the Open Trusted Technology Provider Standard, or O-TTPS, which addresses these issues around supply chain security and product integrity. Recently approved as ISO/IEC 20243, this set of best practices can be applied from design to disposal, throughout the supply chain and the entire product life cycle. Standards like the O-TTPS aim to reduce the risk of tainted (e.g., malware-enabled and malware-capable) and counterfeit hardware and software components from entering the supply chains and making their way into products that connect to the internet. This specific standard also has a conformance program that identifies Open Trusted Technology Providers who conform. The vendors involved in the Dyn incident could have followed the O-TTPS’ requirements for vulnerability analysis and notification of newly discovered and exploitable product weaknesses. If they had done so from the outset, the vulnerability that allowed the Mirai botnet to grow would have been caught early. The attack vector would have subsequently been blocked and the impact on businesses and consumers significantly reduced. Securing Information and Communication Technology (ICT) on which our business enterprises and critical infrastructures depend is a serious problem that becomes even more daunting and complex as we extend those environments to IoT devices. ICT and IoT devices are developed, manufactured, and assembled in multiple countries around the world. They are then distributed and connected globally. Providing international standards like the O-TTPS (ISO/IEC 20243) that all IT providers and their technology partners (e.g., component suppliers, manufacturers, value-add resellers) in their supply chains can adopt, regardless of locale, is one significant way to increase cyber and supply chain security. Standards can’t categorically prevent the inception of DDoS attacks, but what they can do is mitigate their effectiveness and limit their economic damage. The adoption of a universal product integrity and supply chain security standard is a major first step in the continued battle to secure ICT products and IoT devices and their associated end users. Further steps need to be taken in the form of collaboration, whereby we reach a point where we can recognise which technology and technology providers can be trusted and which cannot. But adhering to global standards provides a powerful tool for technology providers and component suppliers around the world to combat current and future DDoS attacks. Source: https://www.infosecurity-magazine.com/opinions/standards-security-great-ddos/

See more here:
Standards and Security: The Great DDoS Challenge

Dormant Linux kernel vulnerability finally slayed

Just, er, eight years later A recently resolved vulnerability in the Linux kernel that had the potential to allow an attacker to gain privilege escalation or cause denial of service went undiscovered for seven years.…

Originally posted here:
Dormant Linux kernel vulnerability finally slayed

Taiwan high-tech industry hardest hit by DDoS attacks in last 30 days

TAIPEI (Taiwan News)—Most denial-of-service (DDoS) attacks launched by hackers from Feb. 15 to March 14, 2017 in Taiwan targeted the high-tech industry, according to statistics compiled by leading global content delivery network provider Akamai Technologies. Industries in Taiwan that were most severely attacked by hackers were the high technology industry (61.8 percent), manufacturing industry (17.6 percent) and the financial services industry (7 percent), according to statistics compiled by Akamai’s intelligent platform that delivers 30 percent of the global Internet traffic. Industries in Taiwan under DDoS attacks from February 15 to March 14, 2017. (Taiwan News) The majority of the hacks were launched from IP addresses in Taiwan, followed by Alabama in the U.S., and Brazil. “It is often a misconception that most attacks are launched from abroad,” said Akamai’s Security Business Unit director Amol Mathur. “Attacks are coming both domestic and outside.” The premium CDN provider works customizes solutions for clients from different industries in Taiwan, including hospitality, banking, travel and airline services. Taiwan’s financial institutes are still recovering from a cybersecurity scare last month, in which 15 banks received threats from an anonymous hacker group to shell out 10 Bitcoins each (equivalent to US$10,466), or brace themselves for DDoS attacks that would compromise their server systems. DDoS attacks launched by hackers often compromise institute’s servers data processing capacity by delivering a sudden deluge of data that overtakes bandwidth resources, for instance if the company server bandwidth only allows 10 Gigabyte per second (Gbps) of capacity it can be paralyzed by a 100 Gbps attack. Hackers might use DDoS as a distraction to conceal other malign operations, such as stealing personal information or credential theft, added Mathur. Industries affected by hacker attacks vary monthly, depending on whether there is a major geopolitical event, said Mathur. For instance global hacker group Anonymous took down the London Stock Exchange system for two hours as part of its campaign against global central banks in June 2016. Mathur advised banks should not heed hacker demands to pay ransom. “In real life you would not pay ransom, so why would you pay hackers,” he said. The cybersecurity expert noted a rise in DDoS attacks globally during the fourth quarter of 2016, and pointed out DDoS attacks data size was increasing exponentially every quarter. Globally, attacks over 100 Gbps jumped 140 percent year-on-year during 4Q16, with the largest-size attack recorded reaching 517 Gbps, according to the Akamai “Fourth quarter 2016 State of the Internet/Security Report.” Mathur noted the cause of increased DDoS attacks was partly due to easy access for people to rent bots online, for as cheap as US$10 by going to a site and simply keying in the website address. Hackers can generate a monthly income of US$180,000 to US$200,000 from bot rentals. It remains extremely difficult for law enforcement agencies from a single country to track down hackers that spread the attacks launched by rented bots around the globe, and hide behind the protection of anonymity offered by the dark web. Additionally, the preferred Bitcoin currency used for business transactions by hackers is hard to trace to an IP address, explained Mathur. Introduction of mobile devices, mobile payment, IP surveillance cameras and emerging Internet of Things (IoT) trends introduce new cybersecurity vulnerabilities as hackers can utilize attacks through large number of connected devices. The Mirai bot for instance exposed vulnerabilities in the default user administrator name and passwords used by thousands of connected IP surveillance cameras and their DVR worldwide, said Mathur. He urged the IoT industry to form a joint standard, and for countries to start implementing regulations that set cybersecurity standards for connected devices. Hackers are also finding ways to target vulnerabilities in smartphone application programming interface (API) to obtain credentials, and data from mobile transactions. Apple Pay and some other mobile payment technologies periodically publish white papers announcing how it is securing data, but are mostly for tech savvy readers, said Mathur. One way consumers can safeguard credit card transactions is to check if the online shopping sites or App they use have The Payment Card Industry Data Security Standard (PCI DSS), noted Mathur. The proprietary information security standard launched nearly a decade ago by major credit card companies Visa, MasterCard, American Express, JCB and others follows a stringent standard and heavily fines companies that do not follow its compliance. Source: http://www.taiwannews.com.tw/en/news/3117326

Originally posted here:
Taiwan high-tech industry hardest hit by DDoS attacks in last 30 days

DDoS Attacks; Can You Find Who Dunnit?

Kaspersky Lab and B2B International recently polled 4,000 businesses among 25 countries that had been hit by a distributed denial of service (DDoS) attack; 40% of respondents said they believed that a rival business had launched the attack. Only 20% of DDoS victims blamed foreign governments and secret service organizations, and another 20% suspect disgruntled former employees. These are interesting statistics, given that it is extremely difficult to determine who launched a DDoS attack. Has law enforcement found any trends to support this belief that many DDoS attacks are caused by industrial sabotage? Maybe, maybe not. When it comes to hacking—especially DDoS hacks—law enforcers seldom find the perpetrators, because it is extremely difficult for anyone to trace the origins of DDoS attacks. The source is typically 1) a legitimate third-party server, running a service which has been leveraged by an attacker as part of a reflection/amplification attack, or 2) a direct flood attack from a single device, or 3) a botnet of many devices in which the IP source addresses are easily spoofed to ones that cannot be associated with the attacker. Motivations and Means Hacker motivations vary; some are political, others are financial. Certainly, if a business wanted to inflict financial or reputational harm upon a competitor, a DDoS attack would do the trick. After all, it is easy and relatively inexpensive for anyone to rent a botnet or DDoS-for-hire service to carry out a DDoS attack. Yes, it’s possible, but do victims have any evidence to back up their suspicions, or are they just paranoid about a rival business? Likewise, the threat of a disgruntled, malicious insider or former employee is a reasonable concern. But again, it is hard to trace the breadcrumbs. Speculating about “who dunnit” is usually pointless; there’s little hope of hunting down the perpetrator(s), and it costs time and money to conduct an investigation. Even if the perps are brought to justice, they’ve already damaged your business. The moral of the story is that it’s useless to close the proverbial stable door after the horse has left; the best approach is to prevent an attack by having DDoS protection in place. Source: http://www.dos-mitigation.com/wp-admin/post-new.php

More:
DDoS Attacks; Can You Find Who Dunnit?

IoT DDoS Reaches Critical Mass

In the wake of the Mirai botnet activity that dominated the end of last year, the “DDoS of Things (DoT)”, where bad actors use IoT devices to build botnets which fuel colossal, volumetric DDoS attacks, has become a growing phenomenon. According to A10 Networks, the DoT is reaching critical mass—recent attacks have leveraged hundreds of thousands of IoT devices to attack everything from large service providers and enterprises to gaming services, media and entertainment companies. In its research, it uncovered that there are roughly 3,700 DDoS attacks per day, and the cost to an organization can range anywhere from $14,000 to $2.35 million per incident. In all, almost three quarters of all global brands, organizations and companies (73%) have been victims of a DDoS attack. And, once a business is attacked, there’s an 82% chance they’ll be attacked again: A full 45% were attacked six or more times. There were 67 countries targeted by DDoS attacks in Q3 2016 alone, with the top three being China (72.6%), the US (12.8%) and South Korea (6.3%). A10 found that 75% of today’s DDoS attacks target multiple vectors, with a 60/40 percentage split of DDoS attacks that target an organization’s application and network layers, respectively. Meanwhile, DDoS-for-hire services are empowering low-level hackers with highly damaging network-layer bursts of 30 minutes or less. This relentless attack strategy systemically hurts corporations as colossal DDoS attacks have become the norm too; 300 Gbps used to be considered massive, but today, attacks often push past 1 Tbps thanks to the more than 200,000 infected IoT devices that have been used to build global botnets for hire. No industry is immune: While 57% of global DDoS attacks target gaming companies, any business that performs online services is a target. Software and technology were targeted 26% of the time; financial services 5%; media and entertainment, 4%; internet and telecom, 4%; and education, 1%. Source: https://www.infosecurity-magazine.com/news/iot-ddos-reaches-critical-mass/

See the original post:
IoT DDoS Reaches Critical Mass

How Homeland Security plans to end the scourge of DDoS attacks

The agency is working on a multimillion dollar effort to protect the country’s most critical systems from distributed denial of service attacks, which are among the simplest digital assaults to carry out and the toughest to fight. MARCH 8, 2017 —In late October, in Surprise, Ariz., more than 100 phone calls bombarded the police department’s emergency dispatch line. Calls also overwhelmed the nearby city of Peoria’s 911 system and departments across California and Texas. But each time a dispatcher picked up, no one was on the line – and there was no emergency. The Arizona district attorney’s office says the calls clogging 911 lines resulted from a digital prank, which triggered a distributed denial of service, or DDoS, attack on critical emergency communication systems. The prosecutor’s office tracked the torrent of calls to 18-year-old hacker Meetkumar Hiteshbhai Desai. Now, he’s facing four counts of felony computer tampering. While Mr. Desai said he didn’t intend to cause any harm, according to the Maricopa County Sheriff’s Office, he did surface a potentially devastating glitch in smartphone software that could exact damage on any number of sensitive and critical targets. Whenever anyone clicked a certain link on his webpage via a mobile device, their phone automatically dialed 911. While this kind of DDoS targeting 911 systems is unprecedented, it’s exactly the type of attack that national law enforcement officials have been concerned about for years. In fact, the Homeland Security Department (DHS) has been working on technology to protect 911 centers from DDoS and telephone-based, or TDoS, attacks for three years. The Arizona incident proved someone can “cause a large number of phones or a large number of computers or a large number of whatever connected device to start generating these calls,” says Dan Massey, program manager in the cybersecurity division of the DHS Science and Technology Directorate. “It went from how much damage can I do from my phone” to a situation where, with just a handful of people, “if all of our phones started calling some victim, whether that’s 911 or a bank or a hospital, that can get very fast and very big.” DDoS attacks are both among the simplest forms of cyberattacks to carry out and the most difficult to defend against. They are designed to direct an overwhelming amount of digital traffic – whether from robocalls or web traffic – at targets to overwhelm them so they can’t handle legitimate business. Writ large, there has been an exponential increase in the intensity and frequency of DDoS attacks over the past six months and critical infrastructure components are possible future targets, according to DHS. For a sense of the scale of today’s DDoS attacks, compare the 100 megabits per second Internet speed at a typical company to the more than 1 million megabits (1 terabit) per second speed of a DDoS attack against Web hosting company Dyn in October. The attack, which drew power from insecure webcams and other internet-connected devices, knocked out widely used online services like Netflix, Twitter, and Spotify for hours. Such massive web DDoS assaults may also become a problem for 911, as the country moves toward a next generation 911 system that uses mapping services to locate callers and can support voice, text, data, and video communication. “What you’re seeing is a convergence of the traditional internet with the phone system and next generation 911 is a great example of that,” says Massey. “DDoS attacks and/or TDoS attacks kind of blend together a little bit there.” To help combat the problem, the department has given out $14 million in grants for DDoS prevention studies, including phone-based attacks. Some of that funding is piloting initiatives to stop phone-based attacks at 911 centers in Miami/Dade County and the City of Houston, as well as at a large bank that the department wouldn’t identify. So far, DHS efforts have yielded, among other things, a DDoS early warning system to flag organizations that an attack may be coming, and alerting them to adjust internet network settings to defend against an onslaught of traffic. Additionally, DHS-funded research from tech firm SecureLogix produced a prototype that can thwart phony telephone calls sent to a 911 system or other critical phone operation. The model attempts to detect bogus calls by monitoring for clues that indicate an incoming call is fake. “As we have seen, it is simple to flood a 911 center, enterprise contact center, hospital, or other critical voice system with TDoS calls,” says Mark Collier, SecureLogix chief technology officer. “The research is essential to get ahead” because the assailants “are generating more attacks, the attacks are more sophisticated, and the magnitude of the attacks is increasing. “ To be sure, the race to keep digital adversaries out of the country’s 911 system faces obstacles, some of which are outside the jurisdiction of Homeland Security and dispatch centers. The DHS DDoS defense program is “a good start,” but one “challenge in defending certain types of critical infrastructure is the fact that emergency services like 911 must serve anyone – immediately,” per Federal Communications Commission rules, “due to their life saving nature,” said Mordechai Guri, research and development head at Israel’s Ben-Gurion University Cyber-Security Research Center. “The approach of blocking the DDoS originators must be backed by a change in the laws and regulations.” Before the October attacks on the Arizona 911 systems, he and fellow Ben-Gurion researchers warned that DDoS attacks launched from cellphones could pose a significant threat to emergency services. During one experiment, it took fewer than 6,000 hacked phones to clog emergency services in a simulated US state, the academics wrote in a September 2016 paper. Such an attack can potentially last for days. The very nature of the 911 system makes shutting out any callers potentially dangerous, and some alternatives, like requiring a person in distress to authenticate themselves for assistance, are not viable, says Massey of DHS. “We really need to make sure that we’re not missing a critical 911 call,” he says. “So that’s a challenge for the project to make sure that we’re not misclassifying people.” Source: http://www.csmonitor.com/World/Passcode/2017/0308/How-Homeland-Security-plans-to-end-the-scourge-of-DDoS-attacks

See more here:
How Homeland Security plans to end the scourge of DDoS attacks

7 Security Steps To Defend Your Company Fram A DDoS Attack

Of all the cybersecurity threats today’s businesses face, distributed denial-of-service (DDoS) attacks are among the most complex and devastating. This type of breach involves multiple compromised systems that work in conjunction to shut down service. Although security technology is becoming more sophisticated, so are hackers, and you don’t want to be caught unprepared if (or more likely, when) your company’s data gets compromised. Below, a few members of Forbes Technology Council each offer one important prevention measure to help your IT department defend against a DDoS attack. 1. Continue To Add Layers Of Defense Remain vigilant, continuing to add layers of security as they become available. Also provide your department with signs to look for so they have a better idea of potential threats. This provides for a much more proactive approach to security. – Chalmers Brown, Due 2. Practice Your Response Plan Have a plan on what to do and who should do it, then do a dry run against it a few times a year. Go further than just your IT team – involve your vendors, executive team, etc. and ask for feedback on what would help them help you in the face of a DDoS attack. Update your plan each time. This practice helps your team execute fast and has the added benefit of showing those around you that you’re prepared. – Brian Fritton, Patch of Land 3. Use A Web Application Firewall (WAF) A Web Application Firewall (WAF) is your best line of defense against a DDoS attack. It acts like an antivirus that blocks all malicious attacks on your website. It sits above your application at the network level to provide protection before the attacks reach your server. Using a WAF not only protects you against DDoS attacks, but also improves application performance and enhances user experience. – Thomas Griffin, OptinMonster 4. Leverage Cloud Services And Educate Yourself Continually Cloud providers will handle security better than you can do in-house — especially if you’re a target. Even the U.S. government leverages cloud providers to consult and augment security. Amazon has DDoS mitigation services, and their DNS is both inexpensive and secure. Educate yourself to stay aware of the potential threats and mitigation services that are available to you. – Tim Maliyil, AlertBoot 5. Help Employees Educate Each Other Since our inception, we’ve had a personal ‘buddy’ assigned to any new team member. They are responsible for teaching the new person all of the dos and don’ts of the department, and also get them more culturally aligned with the team/company. – Pin Chen, ONTRAPORT 6. Get Senior Management Involved In Security Planning It is critical for companies to include senior management in DDoS prevention planning. Most attacks are due to poor ongoing security practices or setups. Ransomware attacks alone cost over $1B in 2017. Companies should consider cloud solutions that offer cost-effective managed security solutions, with ongoing security and maintenance updates, so that they can focus on building their core business. – Cristina Dolan, Trading Screen 7. Segment Your IoT Devices Behind A Firewall While DDoS attacks are difficult to prevent, you can minimize the impact by enabling DDoS and flood protection on your organization’s firewalls. To restore order quickly in the event of an attack, develop a DDoS response plan. To minimize the chance of your IoT infrastructure being used in a DDoS attack, make sure all IoT devices are segmented on a dedicated safe zone behind a firewall. – Bill Conner, SonicWall Source: https://www.forbes.com/sites/forbestechcouncil/2017/03/07/7-security-steps-to-defend-your-company-fram-a-ddos-attack/#4a04a540408

Read more here:
7 Security Steps To Defend Your Company Fram A DDoS Attack

The power of Big Data for security, operations and DDoS protection

DDoS atacks are costly to your reputation and your bottom line. In this podcast recorded at RSA Conference 2017, Avi Freedman, CEO at Kentik, discusses how to recognize attacks quickly and accurately, then shut them down with situation-appropriate mitigation. Here’s a transcript of the podcast for your convenience. I’m Avi Freedman, CEO of a startup called Kentik Technologies, I’m here today, on this podcast, to talk about the power of Big Data for security, operations, … More ?

More:
The power of Big Data for security, operations and DDoS protection

Businesses blame rivals for DDoS attacks

Industrial sabotage is considered to be the most likely reason behind a distributed denial of service attack, a study has revealed More than 40% of businesses hit by a distributed denial of service (DDoS) attack worldwide believe their competitors were behind it, research by Kaspersky Lab and B2B International has revealed. Rival firms are considered more likely culprits than cyber criminals, which were cited as suspects by just 38% of DDoS victims on average. Industrial sabotage is considered to be the most likely reason behind a DDoS attack, coming out higher than political conspiracy and personal vendettas against a business. Typically, DDoS attacks target web servers and aim to make websites unavailable to users. Although no data is stolen, the interruption to the service can be costly in terms of lost business damage to reputation. For example, a massive DDoS attack on Luxembourg’s government servers that started on 27 February 2017 reportedly lasted more than 24 hours, and affected more than a hundred websites. The joint Kaspersky Lab, B2B International study, which polled 4,000 businesses in 25 countries, found that only 20% of DDoS victims overall blamed foreign governments and secret service organisations, with the same proportion suspecting disgruntled former employees. Companies in Asia Pacific are the most suspicious of competitors, with 56% blaming their rivals for DDoS attacks and 28% blaming foreign governments. Personal grudges also carry more suspicion in the region too, with 33% blaming former staff. In Western Europe, only 37% of companies suspect foul play by their competitors, with 17% blaming foreign governments. Looking at attitudes by business size, businesses at the smaller end of the scale are more likely to suspect their rivals of staging an experienced DDoS attack. The study found that 48% of small and medium business representatives believe this to be the case compared with only 36% of enterprises. In contrast, respondents from big companies put more blame on former employees and foreign governments. “DDoS attacks have been a threat for many years, and are one of the most popular weapons in a cyber criminals’ arsenal,” said Russ Madley, head of B2B at Kaspersky Lab UK. “The problem we face is that DDoS attacks can be set up cheaply and easily, from almost anyone, whether that be a competitor, a dismissed employee, socio-political protesters or just a lone wolf with a grudge. “It’s therefore imperative that businesses find an effective way to safeguard themselves from such attacks,” he said. Significant advances in DDoS attacks There were significant advances in DDoS attacks in the last quarter of 2016, according to Kaspersky, with the longest DDoS attack in lasting 292 hours or 12.2 days, which set a record for 2016 and was significantly longer than the previous quarter’s maximum of 184 hours. The last quarter of 2016 also saw the first massive DDoS attacks using the Mirai IoT (internet of things) botnet technology, including attacks on Dyn’s Domain Name System (DNS) infrastructure and on Deutsche Telekom, which knocked 900K Germans offline in November. There were also similar attacks on internet service providers (ISPs) in Ireland, the UK and Liberia, all using IoT devices controlled by Mirai technology and partly targeting home routers in an attempt to create new botnets. Stakeholders recognise lack of security in IoT devices According to Kaspersky, stakeholders worldwide, in particular in the US and EU, recognise the lack of security inherent in the functional design of IoT devices and the need to set up a common IoT security ecosystem. Kaspersky expects to see the emergence of further Mirai botnet modifications and a general increase in IoT botnet activity in 2017. Researchers at Kaspersky Lab also believe that the DDoS attacks seen so far are just a starting point initiated by various actors to draw up IoT devices into the actors’ own botnets, test drive Mirai technology and develop attack vectors. First, they demonstrate once again that financial services like the bitcoin trading and blockchain platforms CoinSecure of India and BTC-e of Bulgaria, or William Hill, one of Britain’s biggest betting sites, which took days to come back to full service, were at the highest risk in the fourth quarter and are likely to remain so throughout 2017. Second, cyber criminals have learnt to manage and launch very sophisticated, carefully planned, and constantly changing multi-vector DDoS attacks adapted to the mitigation policy and capacity of the attacked organisation. Kaspersky Lab’s analysis shows that the cybercriminals in several cases tracked in 2016 started with a combination of various attack vectors gradually checking out a bank’s network and web services to find a point of service failure. Once DDoS mitigation and other countermeasures were initiated, researchers said the attack vectors changed over a period of several days. DDoS enters its next stage of evolution Overall, they said these attacks show that the DDoS landscape entered the next stage of its evolution in 2016 with new technology, massive attack power, as well as highly skilled and professional cyber criminals. However, the Kaspersky researchers note that unfortunately, this tendency has not yet found its way into the cyber security policies of many organisations that are still not ready or are unclear about the necessary investments in DDoS protection services. Source: http://www.computerweekly.com/news/450414239/Businesses-blame-rivals-for-DDoS-attacks

Visit site:
Businesses blame rivals for DDoS attacks